0316 End-to-End Deep Learning Model For Automatic Sleep Staging Using Raw PSG Waveforms
نویسندگان
چکیده
منابع مشابه
End-to-end Learning for 3D Facial Animation from Raw Waveforms of Speech
We present a deep learning framework for realtime speech-driven 3D facial animation from just raw waveforms. Our deep neural network directly maps an input sequence of speech audio to a series of micro facial action unit activations and head rotations to drive a 3D blendshape face model. In particular, our deep model is able to learn the latent representations of time-varying contextual informa...
متن کاملEnd-to-End Learning for the Deep Multivariate Probit Model
The multivariate probit model (MVP) is a popular classic model for studying binary responses of multiple entities. Nevertheless, the computational challenge of learning the MVP model, given that its likelihood involves integrating over a multidimensional constrained space of latent variables, significantly limits its application in practice. We propose a flexible deep generalization of the clas...
متن کاملEnd-to-End Deep Neural Network for Automatic Speech Recognition
We investigate the efficacy of deep neural networks on speech recognition. Specifically, we implement an end-to-end deep learning system that utilizes mel-filter bank features to directly output to spoken phonemes without the need of a traditional Hidden Markov Model for decoding. The system will comprise of two variants of neural networks for phoneme recognition. In particular, we utilize conv...
متن کاملPersonalizing deep learning models for automatic sleep staging
Despite continued advancement in machine learning algorithms and increasing availability of large data sets, there is still no universally acceptable solution for automatic sleep staging of human sleep recordings. One reason is that a skilled neurophysiologist scoring brain recordings of a sleeping person implicitly adapts his/her staging to the individual characteristics present in the brain r...
متن کاملDeepChess: End-to-End Deep Neural Network for Automatic Learning in Chess
We present an end-to-end learning method for chess, relying on deep neural networks. Without any a priori knowledge, in particular without any knowledge regarding the rules of chess, a deep neural network is trained using a combination of unsupervised pretraining and supervised training. The unsupervised training extracts high level features from a given position, and the supervised training le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sleep
سال: 2018
ISSN: 0161-8105,1550-9109
DOI: 10.1093/sleep/zsy061.315